Inner ideals and intrinsic subspaces in linear pair geometries

نویسندگان

  • Wolfgang Bertram
  • Harald Löwe
چکیده

We introduce the notion of intrinsic subspaces of linear and affine pair geometries, which generalizes the one of projective subspaces of projective spaces. We prove that, when the affine pair geometry is the projective geometry of a Lie algebra introduced in [BeNe04], such intrinsic subspaces correspond to inner ideals in the associated Jordan pair, and we investigate the case of intrinsic subspaces defined by the Peirce-decomposition which is related to 5-gradings of the projective Lie algebra. These examples, as well as the examples of general and Lagrangian flag geometries, lead to the conjecture that geometries of intrinsic subspaces tend to be themselves linear pair geometries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inner Ideals and Intrinsic Subspaces of Linear Pair Geometries

We introduce the notion of intrinsic subspaces of linear and affine pair geometries, which generalizes the one of projective subspaces of projective spaces. We prove that, when the affine pair geometry is the projective geometry of a Lie algebra introduced in [BeNe04], such intrinsic subspaces correspond to inner ideals in the associated Jordan pair, and we investigate the case of intrinsic sub...

متن کامل

Weak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups

Let S be a locally compact foundation semigroup with identity and                          be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of    In this paper, we prove that  X  is invariantly  complemented in   if and  only if  the left ideal  of    has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...

متن کامل

Serre Subcategories and Local Cohomology Modules with Respect to a Pair of Ideals

This paper is concerned with the relation between local cohomology modules defined by a pair of ideals and the Serre subcategories of the category of modules. We characterize the membership of local cohomology modules in a certain Serre subcategory from lower range or upper range.

متن کامل

ON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS

Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...

متن کامل

Efficient polynomial reduction

H–bases are bases for polynomial ideals, characterized by the fact that their homogeneous leading terms are a basis for the associated homogeneous ideal. In the computation of H–bases without term orders, an important task is to determine the orthogonal projection of a homogeneous polynomial to certain subspaces of homogeneous polynomials with respect to a given inner product. One way of doing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006